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Sea Sweep size distributions:

* The magnitude of the distribution 1s a function of the bubbling
rate through Sea Sweep.

* Heated and unheated generated SSA are similar indicating most
of the SSA 1s refractory at 230C.

* SS2 (the eutrophic station) has the smallest modal diameter and
an additional mode at ~ 40 nm.

Ambient aerosol size distributions
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* Heated and unheated generated SSA
are similar in their CCN activity for
the bulk sub-1 um size range.

e Heated ambient acrosol (i.e., the
non-volatile Aitken mode) 1s much
less CCN active than the unheated
aerosol.

The upper plots show Sea Sweep (heated and unheated) kappa hygroscopicity
parameter and calculated organic volume fraction. The lower plots show the
same for ambient aerosol.

SSA generated 1n the most eutrophic seawater is least enriched in organics and
the most hygroscopic.

The ambient heated aerosol sampled during high wind speed conditions appears
to be organic (not sea salt) and the organic fraction is less hygroscopic than that
of generated sea spray aerosol.

* There 1s a pool of organic carbon in surface seawater that is not directly

associated with local biological activity but 1s available for
incorporation into freshly generated SSA.

 However, during periods of high wind speed, the majority of CCN in

the marine boundary layer appear to not be primary sea spray aerosol.

*  Next steps are to include aerosol chemical composition from AMS and

FTIR measurements in the analysis as well as additional seawater
parameters.

*  Similar measurements (volatility, CCN activity, chemical composition)

of ambient aerosol during high wind conditions are needed in other
ocean regions to assess the magnitude of the contribution of primary
SSA to MBL CCN.
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